Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Ethics Resources and Policies
  • About the Journal
    • About CMR
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Clinical Microbiology Reviews
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Special Collection
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Ethics Resources and Policies
  • About the Journal
    • About CMR
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Review

Human Pharmacogenomic Variations and Their Implications for Antifungal Efficacy

Joseph Meletiadis, Stephen Chanock, Thomas J. Walsh
Joseph Meletiadis
Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen Chanock
Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas J. Walsh
Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: walsht@mail.nih.gov
DOI: 10.1128/CMR.00059-05
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • FIG. 1.
    • Open in new tab
    • Download powerpoint
    FIG. 1.

    Components of eukaryotic genes in which functional SNPs may reside and alter the expression levels and form of the encoded protein.

  • FIG. 2.
    • Open in new tab
    • Download powerpoint
    FIG. 2.

    A schematic diagram of drug disposition and the physiological factors that play roles in drug pharmacokinetics, such as transporters, metabolizing enzymes, protein binding, and gastric acid excretion (data from references 39, 143, 153, 164, 199, and 248). Any variation in genes encoding proteins involved in the disposition of drugs may have an impact on drug pharmacokinetics. NTCP, sodium-dependent taurocholate transporting polypeptide; BSEP, bile salt export pump; PGT, prostagladin transporter; cAMP, cyclic AMP; NAT, N-acetyltransferase; UGT, UDP-glucuronosyl transferase. The exact localizations and efflux directions of some of these transporters are still under investigation.

  • FIG. 3.
    • Open in new tab
    • Download powerpoint
    FIG. 3.

    Two-dimensional (2D) structure of P-gp showing the distribution of coding SNPs (black-filled circles) (229). The amino acid substitutions are presented, together with nucleotide changes (in parentheses). At the top, 28 exons of the MDR1 (ABCB1) gene are shown with the cDNA nucleotide and amino acid positions, together with noncoding SNPs at the promoter, introns, and untranslated regions. The region of P-gp encoded by a given exon is also highlighted in similar shading on the predicted 2D P-gp structure. The positions of the polymorphisms correspond to the positions of MDR1 (ABCB1) cDNA, with the first base of the ATG start codon set to 1. Mutations located in introns are given as the position downstream (−) or upstream (+) of the respective exon according to the genomic organization of MDR1 (ABCB1) (41). wob., wobble. (Modified from reference 3 by permission from Macmillan Publishers Ltd.)

  • FIG. 4.
    • Open in new tab
    • Download powerpoint
    FIG. 4.

    Influence of the CYP2C19 (allele *2) genotype on average steady-state plasma voriconazole concentrations as determined by a population pharmacokinetics analysis. The box-and-whisker plots display the box locations of the median, upper, and lower quartiles, with whiskers extending to the furthest data point within 1.5 times the interquartile range. The scatter of individual data is also displayed. (Reprinted from reference 78).

Tables

  • Figures
  • TABLE 1.

    Pharmacokinetic characteristics of antifungal drugs in humans

    Antifungal agentGI absorption (%)Distribution (vol, % binding)Metabolism (%)Excretion (%)
    RenalHepatobiliary
    Amphotericin B<104 liters/kg, 91-95Minimal20.6 (parent drug)42.5 (parent drug)
    Itraconazole55-9211 liters/kg, >99>80 (oxidation, deakylation)<0.03 (parent drug)3-18 (parent drug)
    35 (metabolites)54 (metabolites)
    Fluconazole>800.7 liter/kg, 11-12<2080 (parent drug)Minimal
    11 (metabolites)
    Voriconazole>904.6 liters/kg, 58>98 (N-oxidation)<2 (unchanged)20 (metabolites)
    80 (metabolites)
    Posaconazole8-485 liters/kg, 98-99Minimal (oxidation, glucuronidation)14 (mostly metabolites)77 (mostly parent drug)
    Terbinafine70-8011 liters/kg, >99>99 (N-demethylation, alkyl oxidation, aryl oxidation, hydrolysis)80 (metabolites)20 (metabolites)
    Caspofungin<0.20.2 liter/kg, 96>98.6 (hydrolysis, acetylation)1.4 (parent drug)
    41 (metabolites)35 (metabolites)
    MicafunginPoor0.2 liter/kg, 99.8>99 (arylsulfation, catechol O-methylation)0.7 (unchanged)
    7.4 (mostly metabolites)>90 (mostly metabolites)
    AnidulafunginPoor0.6 liter/kg, 84>90 (not metabolized enzymatically)<10 (unchanged)Minimal
    >90 (degradation products)
    Flucytosine76-890.6 liter/kg, <5<1>90 (parent drug)Minimal
    1 (metabolites)
  • TABLE 2.

    SNPs affecting lipoprotein metabolisma

    GenebSNP namePositionNucleotide exchangeFrequency (%)Effectc
    CETP1405VExon 14G+16A32.9↑HDL
    Taq1BIntron 1G+279A41.3↑HDL
    LPLS477XExon 9C/G11↓TG, ↑HDL
    HindIIIIntron 8↓TG
    APOA-IM1 sitePromoter (−76)A/G
    M2 sitePromoter (−83)C/T55.6↓LDL
    M2 sitePromoter (−83)G/A
    APOA-IVHis306GluG/T7-9↓HDL
    APOBArg3611GlnExon 2611-46↑LDL
    Glu4154LysExon 2911-46↑LDL
    Thr→IleuExon 411-46↑LDL
    APOC3Promoter (−455)T/C↓TG
    Nucleotide 1100C/T↑TG
    SstI3′ untranslated regionC/G14↑TG
    APOECys112ArgExon 3T/C15↑LDL
    Arg158CysExon 3C/T2↓LDL
    HLPromoter (−480)C/T↑HDL
    FABP-2Ala54ThrExon 2G/A27-29↑FA
    LDLrPvuIIIntron 16A/G↑LDL
    • ↵ a Data from references 53 and 262.

    • ↵ b CETP, cholesteryl ester transfer protein; LPL, lipoprotein lipase; APO, apolipoprotein; HL, hepatic lipase; LDLr, low-density lipoprotein receptor; FABP-2, fatty acid binding protein 2.

    • ↵ c ↑, increased; ↓, decreased; TG, triglycerides; FA, fatty acids.

  • TABLE 3.

    Human transporter proteins

    TransporterGeneChromosomeSize (aa)aTissue distributionbMembrane localizationc
    P-gp (MDR1) ABCB1 7q21.11,280UbiquitousA
    MRP1 ABCC1 16p13.11,531Ubiquitous (low in L)BL
    MRP2 ABCC2 10q241,545L, K, IA
    MRP3 ABCC3 17q221,527L, A, P, K, IBL
    MRP4 ABCC4 13q321,325Pr, Lu, M, P, T, O, Bl, GA
    MRP5 ABCC5 3q271,437UbiquitousBL
    MRP6 ABCC6 16p13.11,503L, KBL?
    MRP7 ABCC10 6p21.11,492L, Lu, M?
    BCRP ABCG2 4q22655Pl, L, I, BrA
    OATP-A SLCO1A2 12670B, LBL
    OATP-B SLCO2B1 11q13709K, L, B, IBL
    OATP-C SLCO1B1 12p691L, PlBL
    OATP-D SLCO3A1 15q26710Ubiquitous?
    OATP-E SLCO4A1 20q13.33722UbiquitousBL?
    OATP-F SLCO1C1 12p12.3-p14.3712B, T?
    OATP8 SLCO1B3 12p12702LBL
    OATPRP4 SLCO5A1 8q13.1848??
    OCT1 SLC22A1 6q26554L, K (low), I (low)BL
    OCT2 SLC22A2 6q26555K, B, Pl, I (low), S (low)BL
    OCT3 SLC22A3 6q26-q27556L, I, HBL
    OCTN1 SLC22A4 5q31.1551K, L, Lu, IA
    OCTN2 SLC22A5 5q31557B, K, M, Pr, PlA, BL
    OAT1 SLC22A6 11q13.1-q13.2550KBL
    OAT2 SLC22A7 6p21.1-p21.2546L, K (low)A
    OAT3 SLC22A8 11q11542K, B (low)BL
    OAT4 SLC22A9/A11 11q13.1552K, PlA
    OAT5 SLC22A10 11q12.3541LA
    PEPT1 SLC15A1 13q33-q34708K, I, L, PlA, BL
    PEPT2 SLC15A2 3q13.3-q21729K, BA, BL
    CNT1 SLC28A1 15q25-26649K, I, LA
    CNT2 SLC28A2 15q15658UbiquitousA, BL
    • ↵ a aa, amino acids.

    • ↵ b L, liver; K, kidney; B, brain; I, intestine; A, adrenals; P, pancreas; Pr, prostate; Pl, placenta; Lu, lung; M, muscle; T, testis; O, ovaries; Bl, bladder; G, gallbladder; S, spleen; H, hippocampus; Br, breast.

    • ↵ c BL, basolateral; A, apical/luminal.

  • TABLE 4.

    Major human drug-metabolizing cytochrome P450 enzymesa

    CYPChromosomeExpressionRelative protein abundance in liver (%)% of drugs metabolized by enzyme (antifungal drugs)Major variant allele(s)MutationConsequence
    CYP1A115q22-q24Inducible<1CYP1A1*2A&B3801T>C I462VIncreased inducibility Increased activity
    CYP1A215q22qterInducible8-1511 (terbinafine)CYP1A2*1F−164C>AHigher inducibility
    CYP2A619q13.2Constitutive5-123CYP2A6*2L160HInactive enzyme
    CYP2A6*4Gene deletionNo enzyme
    CYP2A6*9TATA-mutLess enzyme
    CYP2B619q13.2Inducible?1-53CYP2B6*5R487CLess enzyme
    CYP2B6*7Q172H; K262R; R487CLess enzyme
    CYP2C810q24.1Constitutive10CYP2C8*21269FDecreased activity
    CYP2C8*3R139K, K399RDecreased activity
    CYP2C8*41264MDecreased activity
    CYP2C910q24Constitutive15-2016 (voriconazole, terbinafine)CYP2C9*2R144CReduced affinity for P450 reductase
    CYP2C9*3I359LAltered substrate specificity
    CYP2C1910q24.1-q24.3Constitutive<58 (voriconazole, terbinafine)CYP2C19*2Altered splice siteInactive enzyme
    CYP2C19*3Stop codonInactive enzyme
    CYP2D622q13.1Constitutive219CYP2D6*2xnGene duplicationIncreased activity
    CYP2D6*4Defective splicingInactive enzyme
    CYP2D6*5Gene deletionNo enzyme
    CYP2D6*61707T>del P34SNo enzyme
    CYP2D6*10S486T T107IUnstable enzyme
    CYP2D6*17R296C S486TReduced affinity for substrates
    CYP2E110q24.3-qterConstitutive/inducible7-114CYP2E1*2R76HLess enzyme expressed
    CYP2E1*3V389INo effects
    CYP2E1*4V179INo effects
    CYP3A47q21.1Constitutive30-4036 (itraconazole, ketoconazole, voriconazole, terbinafine)CYP3A4*2S222PHigher Km for substrate
    CYP3A4*3M445TUnknown
    CYP3A4*4I118VDecreased
    CYP3A4*5P218RDecreased
    CYP3A4*6831 insADecreased
    CYP3A57q21.1Constitutive<1CYP3A5*3Splicing defectNo enzyme
    CYP3A5*6Splicing defectNo enzyme
    • ↵ a Modified from reference 68 with permission of the publisher and from reference 215 with permission of Elsevier; includes data from http://www.cypalleles.ki.se .

  • TABLE 5.

    Potential targets for analyzing genetic polymorphisms important for pharmacokinetics of antifungal drugsa

    DrugAbsorptionDistributionMetabolismExcretion
    GI pH (ATPase)Efflux drug transporters (P-gp, MRP1+0 -5, BCRP)AlbuminAAGLipoproteinsPhase I (CYP450)Phase II (NAT, UGT)Renal (OATs, MRPs, OCTs)Hepatobiliary (P-gp, MRPs, OATPs, OCTs)
    Triazoles
        Itraconazole+++−−+−−−
        Fluconazole−+−+−−−+−
        Voriconazole−+??−+−−−
        Posaconazole+++??+ (?)+ (?)−+
    Polyenes
        Amphotericin Bb−++++−−++
    Allylamines
        Terbinafine−+++++−−−
    Echinocandins
        Caspofungin−++−−++−−
        Micafungin−?+−−−+−−
        Anidulafungin−?+−−−−−−
    Pyrimidines
        Flucytosine−+−−−−−−−
    • ↵ a +, probable; −, improbable.

    • ↵ b Few data exist for amphotericin B lipid formulations.

PreviousNext
Back to top
Download PDF
Citation Tools
Human Pharmacogenomic Variations and Their Implications for Antifungal Efficacy
Joseph Meletiadis, Stephen Chanock, Thomas J. Walsh
Clinical Microbiology Reviews Oct 2006, 19 (4) 763-787; DOI: 10.1128/CMR.00059-05

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Clinical Microbiology Reviews article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Human Pharmacogenomic Variations and Their Implications for Antifungal Efficacy
(Your Name) has forwarded a page to you from Clinical Microbiology Reviews
(Your Name) thought you would be interested in this article in Clinical Microbiology Reviews.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Human Pharmacogenomic Variations and Their Implications for Antifungal Efficacy
Joseph Meletiadis, Stephen Chanock, Thomas J. Walsh
Clinical Microbiology Reviews Oct 2006, 19 (4) 763-787; DOI: 10.1128/CMR.00059-05
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • SUMMARY
    • INTRODUCTION
    • GENETIC ASSOCIATION STUDIES
    • PHARMACOGENOMICS IN ANTIFUNGAL DRUG DISPOSITION
    • OTHER FACTORS THAT AFFECT PHARMACOKINETICS OF ANTIFUNGAL DRUGS
    • CONCLUDING REMARKS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

antifungal agents
Genome, Human
Pharmacogenetics
Polymorphism, Genetic

Related Articles

Cited By...

About

  • About CMR
  • Editor in Chief
  • Editorial Board
  • Policies
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Ethics
  • Contact Us

Follow #ClinMicroRev

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0893-8512; Online ISSN: 1098-6618